- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Pengitore, Mark (4)
-
Choi, Seongjun (1)
-
Ferov, Michal (1)
-
Ho, Meng-Che “Turbo” (1)
-
Kropholler, Robert (1)
-
Oh, Josiah (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this article, we study the asymptotic behaviour of conjugacy separabilityfor wreath products of abelian groups. We fully characterise the asymptoticclass in the case of lamplighter groups and give exponential upper and lowerbounds for generalised lamplighter groups. In the case where the base group isinfinite, we give superexponential lower and upper bounds. We apply our resultsto obtain lower bounds for conjugacy depth functions of various wreath productsof groups where the acting group is not abelian.more » « less
-
Choi, Seongjun; Ho, Meng-Che “Turbo”; Pengitore, Mark (, Proceedings of the Edinburgh Mathematical Society)Abstract A group is said to have rational growth with respect to a generating set if the growth series is a rational function. It was shown by Parry that certain torus bundle groups of even trace exhibits rational growth. We generalize this result to a class of torus bundle groups with odd trace.more » « less
-
Kropholler, Robert; Pengitore, Mark (, Bulletin of the London Mathematical Society)
-
Oh, Josiah; Pengitore, Mark (, Pacific Journal of Mathematics)
An official website of the United States government
